• Deep learning frameworks

    Deep learning frameworks Advanced technologies for modern AI applications

    Discover the leading deep learning frameworks that will take your AI projects to the next level.

TensorFlow Powerful deep learning

TensorFlow is an open source framework from Google that was developed specifically for machine learning and deep learning. It provides a comprehensive and flexible platform for the development and deployment of machine learning models. TensorFlow supports both simple and complex neural networks and is known for its scalability and efficiency.

With TensorFlow, models can be developed and deployed on various platforms such as desktop, mobile, web and cloud. It provides robust tools for data preparation, modelling, training and deployment, including support for GPUs and TPUs to accelerate processing.

Keras An easy introduction to deep learning

Keras is a user-friendly, highly modular deep learning framework that is perfect for beginners. It runs on TensorFlow, Theano and CNTK and enables the quick and easy development of prototypes. Keras offers an intuitive API that simplifies the creation and training of neural networks.

It supports common layers such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) as well as utility layers such as dropout, batch normalisation and pooling. Keras is also known for its flexibility and scalability and can be run on GPUs and TPUs.

PyTorch Dynamic neural networks

PyTorch, developed by Facebook, is a flexible and dynamic framework that is particularly popular in research and development. It supports dynamic calculation graphs that allow easy customisation and modification of networks. PyTorch is known for its excellent performance and easy implementation of complex models. It offers extensive support for different types of neural networks and is particularly useful for applications that require fast prototyping and experimental flexibility.

Caffe Fast and efficient deep learning

Caffe is a deep learning framework that is characterised by its speed and efficiency. Originally developed for image processing, Caffe offers a comprehensive architecture for the development of Convolutional Neural Networks (CNNs). It is particularly suitable for applications that require high performance and low latency. Caffe supports a variety of layers and is known for its high speed of training and inference, making it ideal for production environments.

Learn more about deep learning frameworks Contact sysGen now

Allgemeine Daten
Weitere Informationen
Ihre optimale Website-Nutzung

Diese Website verwendet Cookies und bindet externe Medien ein. Mit dem Klick auf „✓ Alles akzeptieren“ entscheiden Sie sich für eine optimale Web-Erfahrung und willigen ein, dass Ihnen externe Inhalte angezeigt werden können. Auf „Einstellungen“ erfahren Sie mehr darüber und können persönliche Präferenzen festlegen. Mehr Informationen finden Sie in unserer Datenschutzerklärung.

Detailinformationen zu Cookies & externer Mediennutzung

Externe Medien sind z.B. Videos oder iFrames von anderen Plattformen, die auf dieser Website eingebunden werden. Bei den Cookies handelt es sich um anonymisierte Informationen über Ihren Besuch dieser Website, die die Nutzung für Sie angenehmer machen.

Damit die Website optimal funktioniert, müssen Sie Ihre aktive Zustimmung für die Verwendung dieser Cookies geben. Sie können hier Ihre persönlichen Einstellungen selbst festlegen.

Noch Fragen? Erfahren Sie mehr über Ihre Rechte als Nutzer in der Datenschutzerklärung und Impressum!

Ihre Cookie Einstellungen wurden gespeichert.